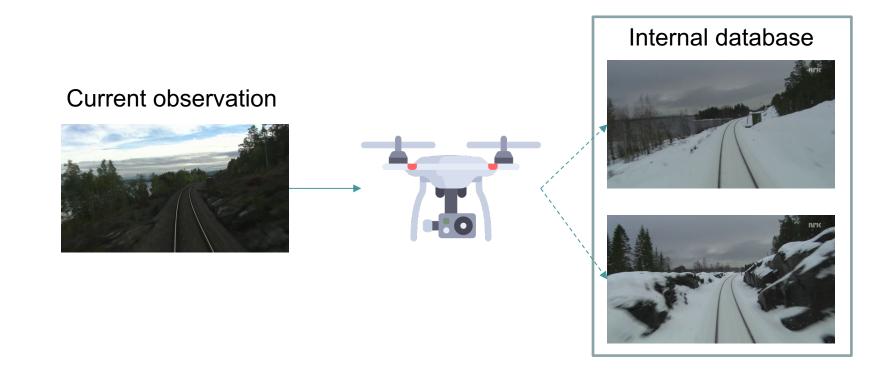
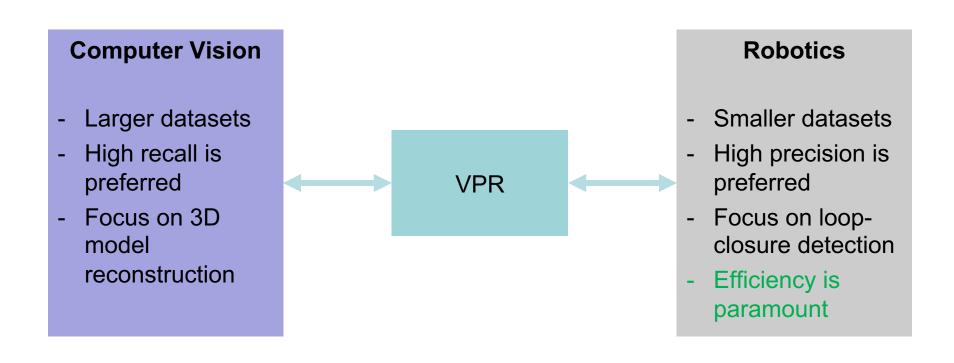


Efficiency Aware Multi-Technique Visual Place Recognition

Presented By Bruno Arcanjo


Supervised By Dr. Shoaib Ehsan Prof. Klaus Mcdonald-Maier

26/04/2023


eis.essex.ac.uk

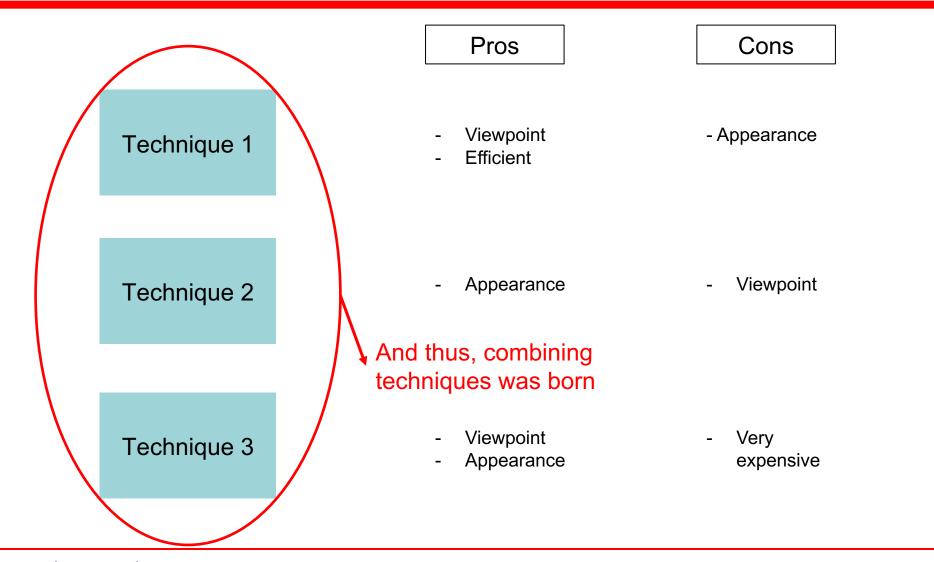
 Definition: the ability for a system to recognize a previously seen place using only image information

Why Is VPR Challenging?

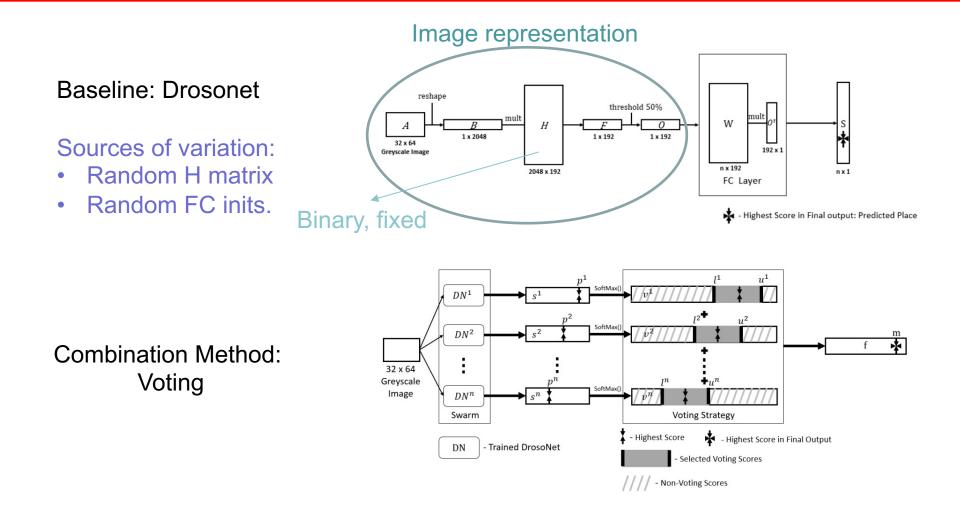
Visual changes

- Same place can look very different
 - Day/night cycles
 - Seasonal changes
 - Different viewpoints
 - Dynamic elements
- Two places can look the same
 - Especially in the same environment

Computational requirements


- Mobile robotics often operate with low-end hardware
- How to efficiently represent an image for matching?
- How to search an ever growing internal image database?

Seasons	
Viewpoints	
Occlusions, Dynamics	
Weather, Lighting, Shadows	


Several Specialist Techniques

eis.essex.ac.uk

Combining Fly-Inspired Units By Voting

Voting Results

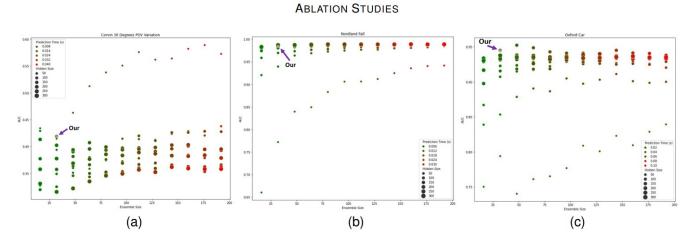
VPR Performance

Note: VPR performance is usually evaluated in terms of area-under-the precision recall curve (PR-AUC)

FlyNet DrosoNet Voting HOG CoHOG AMOSNet HybridNet GIST NetVLAD CALC 1 0.8 0.6 0.4 0.2 0 Oxford Car Gardens Point Nordland Fall Nordland Lagout 15 Corvin 30 Day Right Shift Winter Degrees POV Degrees POV Variation Variation

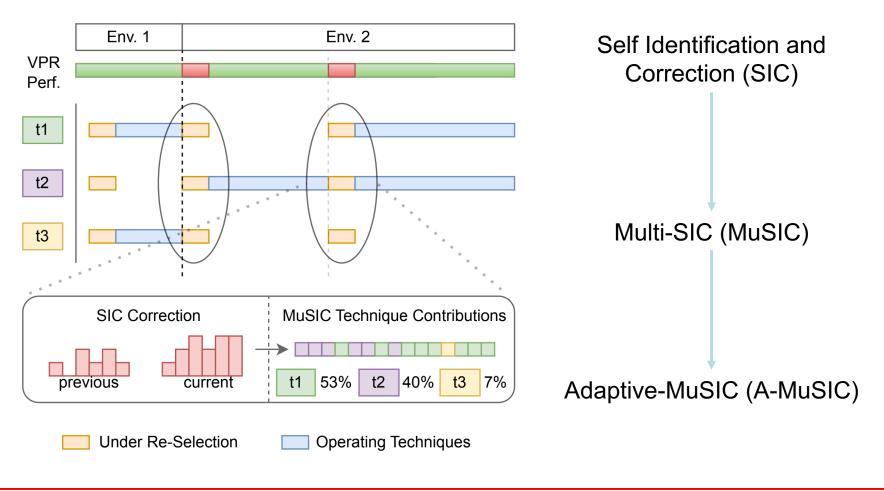
Precision-Recall AUCs

PREDICTION TIMES AND MEMORY USAGE COMPARISON

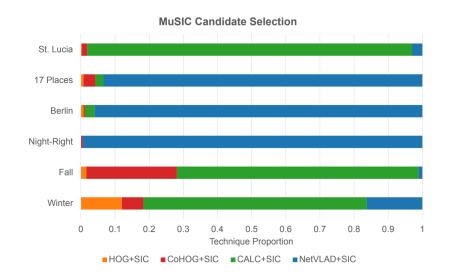

Model	Prediction time (ms)	FPS	Size (MBs)		
HybridNet	1143.92	0.87	61.44		
AMOSNet	1138.97	0.88	61.44		
CoHOG	3627.18	0.28	123.01		
CALC	73.62	13.58	4.26		
GIST	225.04	4.44	4.53		
HOG	208.71	4.79	142.88		
NetVLAD	1435.11	0.70	16.38		
FlyNet	1.00	1000	0.26		
DrosoNet	1.00	1000	0.19		
Voting	18.43	54.27	6.19		

Computational Performance

Voting Drawbacks


• Not so obvious hyperparameters...

- Huge performance disparities depending on random initialization of Drosonets
 - Requiring large number of Drosonets to guarantee performance (we used 32 baseline models in our work)

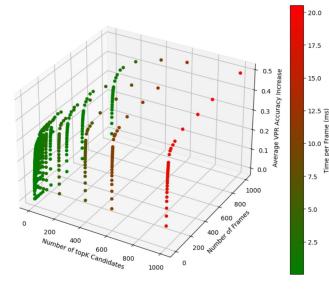

A-MUSIC SYSTEM



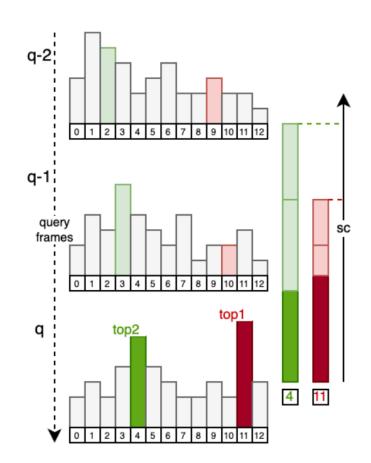
eis.essex.ac.uk

A-MuSIC Results And Selection Pattern

A-MuSIC Selections


TABLE II: VPR Performance (AUC) and Prediction Time (ms)

[Winter		Fall		Berlin		Night-Right		17 Places		St. Lucia		Average	
		AUC	ms	AUC	ms	AUC	ms	AUC	ms	AUC	ms	AUC	ms	AUC	ms
[HOG	0.29	49	0.84	48	0.03	16	0.03	15	0.34	96	0.56	47	0.35	45
	CALC	0.30	168	0.88	168	0.06	157	0.13	161	0.38	170	0.48	165	0.37	165
	CoHOG	0.23	795	0.85	785	0.28	225	0.45	185	0.31	1525	0.37	729	0.42	707
	NetVLAD	0.28	723	0.68	719	0.81	722	0.54	717	0.48	727	0.35	721	0.52	722
	HOG+SIC	0.76	54	0.98	55	0.02	20	0.40	17	0.46	104	0.84	52	0.58	50
	CALC+SIC	0.86	172	0.99	175	0.56	163	0.71	163	0.67	177	0.92	170	0.79	170
	CoHOG+SIC	0.67	747	0.99	776	0.80	218	0.87	184	0.76	1518	0.84	718	0.82	694
	NetVLAD+SIC	0.78	747	0.94	743	0.96	736	0.97	742	0.82	745	0.85	717	0.89	738
	MuSIC	0.95	1790	1.00	1748	0.95	1164	0.97	1094	0.86	2544	0.92	1937	0.94	1713
	A-MuSIC	0.90	621	0.97	649	0.95	558	0.98	766	0.85	982	0.92	747	0.93	721



A-MuSIC Limitations

- Dependance on sequential imagery
- Still quite a lot of re-selection false positives
- Again, not so obvious hyperparameters

SIC WITH K=2, F=2

- Extend DrosoNet and Voting to achieve better individual performance
 - DrosoNet currently works as a classifier, adapting it to work as a local descriptor could be useful for viewpoint resilience
 - A new fusion/voting/combination schema on this DrosoNet descriptor can be developed for better performance at still a low comp. cost
- Extend A-MuSIC selection decision to take computational cost into account
 - If deciding between two equally performing techniques, the less expensive one should be preferred
 - If deciding between two differently performing techniques, the tradeoff of performancecost ratio should be a major factor